Performance Studies of Out-of-Core Computing on Various Storage Devices -Fusion-IO's IOSan, SuperTalent's RaidDrive, OCZ Vertex 3, Kingston V+

> By Derrick Lee, Garrett Lord, Jesse Martinez, and Christopher Moore

Mentors: HB Chen, Parks Fields, Benjamin McClelland, Alfred Torrez

Computer Systems, Cluster, and Networking Summer Institute 2011

Outline

- Out of Core Testing
 - Introduction
 - Devices Used
 - Types of Benchmarks
 - Results from Benchmarks
 - Cost Efficiency
 - Areas for Improvement
 - Conclusion

Introduction

- Datasets are characterized by their very large sizes with multiple superposed scalar and vector fields, demanding an imperative need for new interactive exploratory visualization capabilities
- Sequence of Out-of-core benchmarking tests were done on various storage devices such as SATA based Solid State Devices and PCI-Express based SSD

Devices

- System
 - Fedora 13 64bit
 - RAM: 144GB, 16 Cores
 - Devices
 - Fusion IO IOSAN SSD 640GB
- System
 - Fedora 15 64bit
 - RAM: 8GB, 8 Cores
 - Devices
 - SuperTalent RAID Drive 512GB
 - APTEC PCI-Express 4-Port SATA Controller
 - 4x 240 GB OCZ Vertex 3
 - 4x 256 GB Kingston V+ Series

Benchmark Tests

- FIO (File Input/Output) Benchmark
 - Unbuffered/Buffered I/O
 - Sequential Read
 - Sequential Write
 - Random Read
 - Random Write
- Graph 500
 - Scale 28
 - Cores: 16

FIO Benchmark

- Three types of results done
 - Aggregate Bandwidth
 - I/O Operations per Second
 - Completion Latency
- Ext2 File systems were created on the devices

Graph 500 Results

FIO Benchmark - IOPS - Unbuffered - 64 Jobs

■ 512 ■ 2k ■ 8k ■ 32k ■ 128k ■ 512k ■ 2M ■ 8M

FIO Benchmark - Aggregate Bandwidth - Unbuffered - 64 Jobs

■512 ■2k ■8k ■32k ■128k ■512k ■2M ■8M

FIO Benchmark Cost Efficiency

Device (MTBF)	Capacity (GB) / \$	Bandwidth (MB) / \$	IOPS / \$
Fusion IO	0.040	0.012	3.011
Super Talent (1.5 mil. Hours)	0.256	0.056	14.355
OCZ Vertex 3 (2 mil. Hours ea.)	0.426	0.035	8.904
Kingston V+ (1 mil. Hours ea.)	0.499	0.021	7.224

Cost/Capacity List Cost(\$)

Bandwidth Cost Comparison

MB/sec/\$

IOPs Cost Comparison - IOPs/\$

Areas for Future Improvement

- Benchmarks
 - IOZone
 - XDD
 - Bonnie++
 - Bandwidth+
 - STREAM
 - ScaLAPACK
- Performance Analysis of SSDs in Larger Systems
 - Memory Swap Performance
- File Systems Formats

Conclusion

 In respect to processing power, FIO test results also showed that the Fusion IO drive displayed significantly better performance. However, performance per dollar indicates that the smaller SSDs had a higher cost efficiency rating.

• Graph500 benchmark testing showed that the Fusion IO had a high edge traverse rate with the swap system but baseline results showed to be higher.

•Although the Fusion IO had higher performances, the performance/cost results showed to be lower than the rest of the SSD devices.

Questions?

